MicroBooNE – what are we worried about?

Andy Furmanski
For the MicroBooNE collaboration
FNAL xsec workshop
12th March2018

MiniBooNE's oscillation analysis in one slide

- Signal selection CC0π
 - I.e. 1 muon ring, nothing else (or one electron ring)
- NUANCE used as baseline MC
- Then, v_{μ} used to constrain $v_{\rm e}$ prediction (via covariance matrix)
 - Everything done in E_vQE space

What MiniBooNE missed

- MiniBooNE's "high-M_A" puzzle led to the realisation we were missing various nuclear effects
 - MEC interactions, short range correlations, etc
- Many of these were really demonstrated by MiniBooNE for the first time, but...
- MiniBooNE never managed to incorporate these improved models into the oscillation analysis
- MiniBooNE also had a large background from neutral pions (though strongly constrained by their own data)
 - And an irreducible single photon background

MicroBooNE as a solution?

- MicroBooNE is a LArTPC also in the Booster Neutrino Beam
- Exposed to the NuMI beam too!
- Primary objective is to investigate the MiniBooNE Low Energy Electron-like Excess
- LArTPC selected due to high spatial resolution
 - Can reconstruct full neutrino interaction for different topologies
 - Lower thresholds, particularly for protons

Cosmics at MicroBooNE

- MicroBooNE has no overburden
- Electron drift time is 2.2ms
 - Roughly 8 cosmics per drift window
 - And 1 neutrino every 600 spills

 1 year with no cosmic ray tagger, 1 year with partial CRT and remaining with full CRT

See talk by Marco Del Tutto tomorrow for information on how we reduce/remove these!

Who can find the neutrino interaction?

CCOpi signal at MicroBooNE? - numu

CCOpi signal at MicroBooNE? - nue

Exclusive final states?

- Requiring additional particles significantly reduces cosmic background
- As does requiring containment

MicroBooNE strategy

- We are pursuing multiple strategies
 - CC-inclusive cosmic rejection hard
 - CC + proton(s) lower stats, much lower cosmic background
- For all of these, we build complementary muonand electron-based selections
- Eventually, we hope to show multiple consistent results
 - Or, if they're inconsistent, we want to be sure it's not because we've missed interaction model problems in one (or more) analysis

An aside on reconstruction

- MicroBooNE are also testing multiple reconstruction paradigms/toolkits:
 - "Traditional" pattern recognition
 - Direct-to-3D approaches
 - "Deep learning" methods
- Different strengths/weaknesses not clear which will give the best sensitivity, or how model dependence might enter differently
- Proton energy threshold currently <50MeV
 - Pushing this down, can't really go lower than 20MeV

What are we worried about?

Cosmics:

- Tagging efficiency
- Signal impact
- Time variation
- Spallation?

Modelling uncertainties:

- Energy reconstruction
- Selection efficiency
- Muon/electron differences
- Neutrino backgrounds

Detector effects:

- Space charge
- Diffusion
- Lifetime
- Recombination
- Dead/noisy regions?

What are we worried about?

Cosmics:

- Tagging efficiency
- Signal impact
- Time variation
- Spallation?

Detector effects:

- Space charge
- Diffusion
- Lifetime
- Recombination
- Dead/noisy regions?

Modelling uncertainties:

- Energy reconstruction
- Selection efficiency
- Muon/electron differences
- Neutrino backgrounds

Given the title of this workshop, we'll focus on these!

What models are we using?

- Currently developing analyses using 3 GENIE model tunes
 - Not claiming this is complete
 - What effects are we not able to encapsulate in this list of models?

Model element	Tune 1 (Default)	Tune 2	Tune 3
Nuclear model	Bodek-Ritchie Fermi Gas	Local Fermi Gas	Local Fermi Gas
Quasi-elastic	Llewellyn-smith	Nieves	Nieves
Meson-exchange currents	Empirical	Nieves	Nieves
Resonant	Rein-Seghal	Rein-Seghal	Berger-Seghal
Coherent	Rein-Seghal	Rein-Seghal	Berger-Seghal
FSI	hA	hA	hA2014

Energy reconstruction

 Using LArTPC technology, we should be able to track every particle – full calorimetric energy reco

• For CC1p:

$$E_v = E_l + E_p - M_p - E_b$$

Note, for different topologies we may be able to do better than this

• For CC-inc:

$$E_v = E_l + \Sigma (E_p - M_p - E_b) + \Sigma (E_\pi)$$

This is assumed in most DUNE oscillation studies

Neutrino energy biases

- We have to correct for invisible energy from
 - Neutrons
 - Protons below threshold
 - Nuclear remnant/breakup (also alphas/deuterons?)
 - Binding energy
- Can we constrain these with other data? Or our data? What should we be measuring?
- What models should we be using to cross check this?
 - Also, which shouldn't we trust?

muon/electron differences

- Proton threshold
 - energy transfer threshold
 - For a given E_{ν} , ν_{μ} and ν_{e} cross sections integrated over a different omega range
 - Do we understand the impact of this?
- Other effects?
 - Giant resonances lead to large differences for similar reasons, but can they produce a proton above threshold?
- FSI what fraction of events are 0π , Np?
 - muon and electron fluxes are different, feed down due to FSI is different...
- Second-class currents? Radiative effects?

Energy transfer in different models

- Proton threshold implies a cut on this variable
- Different models predict very different shapes!
- What model should we be considering, when worrying about this effect?

Andy Furmanski 17

Containment

- Electron showers require containment for energy estimation
 - Still, we will always miss some EM energy which we need to model/correct for
- Not true for muons 50% leave the TPC
 - We can estimate their momentum from Multiple Coulomb Scattering
 - But, exiting muons look the same as entering cosmics
- One strategy is to require the muons are contained we get a p-theta inefficiency
 - Different between electrons and muons
 - How does this translate to uncertainties due to modelling?
 - What models should we be looking at when worrying about this?

Photons??

- MiniBooNE can't distinguish electrons and photons
 - NC single gamma was an irreducible background

electron-photon separation

- MicroBooNE measures more about the event than MiniBooNE!
 - Topology separation between nucleon and photon
 - Shower start dE/dx information

Andy Furmanski 20

Single photon search methods

- Single photon
 - Most inclusive search
 - Largest cosmic backgrounds

- Single photon + track(s)
 - Track expected to be a proton (from Δ decay)
 - Can attempt to reconstruct ∆ mass
 - Smaller cosmic background

Single photon concerns

- Backgrounds:
 - Cosmic photons/electrons
 - neutrino-induced π^0
- Signal model
 - Tracking threshold concerns
 - Expected proton energies?
 - Photon matching to track
 - Decay kinematics?
 - FSI?

Questions

- What effect or concern have we not thought of?
- What is the set of models we should be using a cross checks of potential biases?
 - What model(s) should we not be using?
- What measurements do we need to make in our own data?
 - Nuclear effects in argon
 - Final state interactions
 - See Marco's talk tomorrow

Summary

- The LArTPC technology provides a huge amount of information on the final state
- MicroBooNE are pursuing electron-neutrino excess searches using multiple topological signatures
 - Also pursuing single-photon production measurements, again with multiple topological signatures
- For exclusive channels, and inclusive selections, we are worrying about various model-dependencies
 - But we are also asking the community for advice
 - If you are concerned about us missing something, tell us!

